Abstract composition laws and their modulation spaces
نویسندگان
چکیده
منابع مشابه
wavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Composition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces
We introduce new classes of Banach algebras of pseudodifferential operators with symbols in certain modulation spaces and investigate their composition and the functional calculus. Operators in these algebras possess the spectral invariance property on the associated family of modulation spaces. These results extend and contain Sjöstrand’s theory, and they are obtained with new phase space meth...
متن کاملMixed Modulation Spaces and Their Application to Pseudodifferential Operators
This paper uses frame techniques to characterize the Schatten class properties of integral operators. The main result shows that if the coefficients {〈k,Φm,n〉} of certain frame expansions of the kernel k of an integral operator are in l, then the operator is Schatten p-class. As a corollary, we conclude that if the kernel or Kohn-Nirenberg symbol of a pseudodifferential operator lies in a parti...
متن کاملFractional spaces and conservation laws
In 1994, Lions, Perthame and Tadmor conjectured the maximal smoothing effect for multidimensional scalar conservation laws in Sobolev spaces. For strictly smooth convex flux and the one-dimensional case we detail the proof of this conjecture in the framework of Sobolev fractional spaces W s,1, and in fractional BV spaces: BV s. The BV s smoothing effect is more precise and optimal. It implies t...
متن کاملDirac structures and their composition on Hilbert spaces
Dirac structures appear naturally in the study of certain classes of physical models described by partial differential equations (p.d.e.’s). They are the underlying power conserving structures of the p.d.e.’s. We study these structures and their properties from an operator-theoretic point of view. In particular, we find necessary and sufficient conditions for the composition of two Dirac struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pseudo-Differential Operators and Applications
سال: 2012
ISSN: 1662-9981,1662-999X
DOI: 10.1007/s11868-012-0048-7